domingo , 28 abril 2024
Ultima hora
Inicio / BIBLIOGRAFIA / Multimodal Neuroimaging Using Concurrent EEG/fNIRS for Poststroke Recovery Assessment: An Exploratory Study

Multimodal Neuroimaging Using Concurrent EEG/fNIRS for Poststroke Recovery Assessment: An Exploratory Study

Background

Persistent motor deficits are very common in poststroke survivors and often lead to disability. Current clinical measures for profiling motor impairment and assessing poststroke recovery are largely subjective and lack precision.

Objective

A multimodal neuroimaging approach was developed based on concurrent functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to identify biomarkers associated with motor function recovery and document the poststroke cortical reorganization.

Methods

EEG and fNIRS data were simultaneously recorded from 9 healthy controls and 18 stroke patients during a hand-clenching task. A novel fNIRS-informed EEG source imaging approach was developed to estimate cortical activity and functional connectivity. Subsequently, graph theory analysis was performed to identify network features for monitoring and predicting motor function recovery during a 4-week intervention.

Results

The task-evoked strength at ipsilesional primary somatosensory cortex was significantly lower in stroke patients compared with healthy controls (P < .001). In addition, across the 4-week rehabilitation intervention, the strength at ipsilesional premotor cortex (PMC) (R = 0.895, P = .006) and the connectivity between bilateral primary motor cortices (M1) (R = 0.9, P = .007) increased in parallel with the improvement of motor function. Furthermore, a higher baseline strength at ipsilesional PMC was associated with a better motor function recovery (R = 0.768, P = .007), while a higher baseline connectivity between ipsilesional supplementary motor cortex (SMA)–M1 implied a worse motor function recovery (R = −0.745, P = .009).

Conclusion

The proposed multimodal EEG/fNIRS technique demonstrates a preliminary potential for monitoring and predicting poststroke motor recovery. We expect such findings can be further validated in future study.
Rihui LI, Sheng LI, Yingchun Z et al. Neurorehabilitation and Neural Repair. 2020 vol34, issue12

Sobre Aritz Monasterio

Interesante también

PHYSIOLOGY LAB BUSCA FISIOTERAPEUTA

Empresa: Physiology Lab S.L Ciudad: Madrid Email: Physiologylab.info@gmail.com Si quieres publicar tu oferta de empleo ...

Deja un comentario